p-group, metabelian, nilpotent (class 3), monomial
Aliases: M4(2).10C23, C4○D4.34D4, D4.14(C2×D4), C8.122(C2×D4), (C2×C8).358D4, Q8.14(C2×D4), C4○(D4.5D4), C4○(D4.4D4), C4○(D4.3D4), D4.5D4⋊8C2, D4.3D4⋊7C2, D4.4D4⋊8C2, (C2×D4).226D4, (C2×D8)⋊49C22, (C2×C4).18C24, (C2×Q8).181D4, D8⋊C22⋊8C2, (C2×C8).263C23, (C2×Q16)⋊54C22, C8○D4.11C22, C4○D4.30C23, (C2×D4).72C23, C4.165(C22×D4), C8⋊C22.4C22, (C2×Q8).60C23, C4.176(C4⋊D4), C8.C4⋊18C22, (C2×SD16)⋊57C22, C4.D4⋊14C22, C8.C22.3C22, C23.112(C4○D4), C4.10D4⋊14C22, C22.36(C4⋊D4), (C22×C8).267C22, (C22×C4).993C23, (C2×M4(2)).61C22, M4(2).8C22⋊4C2, (C2×C8○D4)⋊9C2, (C2×C4○D8)⋊19C2, C2.89(C2×C4⋊D4), (C2×C8.C4)⋊28C2, (C2×C4).1430(C2×D4), C22.21(C2×C4○D4), (C2×C4).833(C4○D4), (C2×C4○D4).131C22, SmallGroup(128,1799)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for M4(2).10C23
G = < a,b,c,d,e | a8=b2=1, c2=a6b, d2=e2=a4, bab=a5, cac-1=a-1b, dad-1=a3, ae=ea, bc=cb, bd=db, be=eb, dcd-1=a6bc, ce=ec, de=ed >
Subgroups: 412 in 226 conjugacy classes, 98 normal (38 characteristic)
C1, C2, C2, C4, C4, C22, C22, C8, C8, C2×C4, C2×C4, D4, D4, Q8, Q8, C23, C23, C2×C8, C2×C8, M4(2), M4(2), D8, SD16, Q16, C22×C4, C22×C4, C2×D4, C2×D4, C2×D4, C2×Q8, C2×Q8, C4○D4, C4○D4, C4.D4, C4.10D4, C8.C4, C22×C8, C22×C8, C2×M4(2), C2×M4(2), C2×M4(2), C8○D4, C8○D4, C2×D8, C2×SD16, C2×Q16, C4○D8, C8⋊C22, C8⋊C22, C8.C22, C8.C22, C2×C4○D4, C2×C4○D4, M4(2).8C22, C2×C8.C4, D4.3D4, D4.4D4, D4.5D4, C2×C8○D4, C2×C4○D8, D8⋊C22, M4(2).10C23
Quotients: C1, C2, C22, D4, C23, C2×D4, C4○D4, C24, C4⋊D4, C22×D4, C2×C4○D4, C2×C4⋊D4, M4(2).10C23
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(2 6)(4 8)(10 14)(12 16)(17 21)(19 23)(26 30)(28 32)
(1 9 7 15 5 13 3 11)(2 16 4 10 6 12 8 14)(17 26 19 28 21 30 23 32)(18 29 24 27 22 25 20 31)
(1 9 5 13)(2 12 6 16)(3 15 7 11)(4 10 8 14)(17 32 21 28)(18 27 22 31)(19 30 23 26)(20 25 24 29)
(1 31 5 27)(2 32 6 28)(3 25 7 29)(4 26 8 30)(9 18 13 22)(10 19 14 23)(11 20 15 24)(12 21 16 17)
G:=sub<Sym(32)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (2,6)(4,8)(10,14)(12,16)(17,21)(19,23)(26,30)(28,32), (1,9,7,15,5,13,3,11)(2,16,4,10,6,12,8,14)(17,26,19,28,21,30,23,32)(18,29,24,27,22,25,20,31), (1,9,5,13)(2,12,6,16)(3,15,7,11)(4,10,8,14)(17,32,21,28)(18,27,22,31)(19,30,23,26)(20,25,24,29), (1,31,5,27)(2,32,6,28)(3,25,7,29)(4,26,8,30)(9,18,13,22)(10,19,14,23)(11,20,15,24)(12,21,16,17)>;
G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (2,6)(4,8)(10,14)(12,16)(17,21)(19,23)(26,30)(28,32), (1,9,7,15,5,13,3,11)(2,16,4,10,6,12,8,14)(17,26,19,28,21,30,23,32)(18,29,24,27,22,25,20,31), (1,9,5,13)(2,12,6,16)(3,15,7,11)(4,10,8,14)(17,32,21,28)(18,27,22,31)(19,30,23,26)(20,25,24,29), (1,31,5,27)(2,32,6,28)(3,25,7,29)(4,26,8,30)(9,18,13,22)(10,19,14,23)(11,20,15,24)(12,21,16,17) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(2,6),(4,8),(10,14),(12,16),(17,21),(19,23),(26,30),(28,32)], [(1,9,7,15,5,13,3,11),(2,16,4,10,6,12,8,14),(17,26,19,28,21,30,23,32),(18,29,24,27,22,25,20,31)], [(1,9,5,13),(2,12,6,16),(3,15,7,11),(4,10,8,14),(17,32,21,28),(18,27,22,31),(19,30,23,26),(20,25,24,29)], [(1,31,5,27),(2,32,6,28),(3,25,7,29),(4,26,8,30),(9,18,13,22),(10,19,14,23),(11,20,15,24),(12,21,16,17)]])
32 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 8A | 8B | 8C | 8D | 8E | ··· | 8J | 8K | 8L | 8M | 8N |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 8 | ··· | 8 | 8 | 8 | 8 | 8 |
size | 1 | 1 | 2 | 2 | 2 | 4 | 4 | 8 | 8 | 1 | 1 | 2 | 2 | 2 | 4 | 4 | 8 | 8 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 8 | 8 | 8 | 8 |
32 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | |||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | D4 | D4 | D4 | D4 | C4○D4 | C4○D4 | M4(2).10C23 |
kernel | M4(2).10C23 | M4(2).8C22 | C2×C8.C4 | D4.3D4 | D4.4D4 | D4.5D4 | C2×C8○D4 | C2×C4○D8 | D8⋊C22 | C2×C8 | C2×D4 | C2×Q8 | C4○D4 | C2×C4 | C23 | C1 |
# reps | 1 | 2 | 1 | 4 | 2 | 2 | 1 | 1 | 2 | 4 | 1 | 1 | 2 | 2 | 2 | 4 |
Matrix representation of M4(2).10C23 ►in GL4(𝔽17) generated by
0 | 0 | 12 | 12 |
0 | 0 | 12 | 5 |
5 | 12 | 0 | 0 |
12 | 12 | 0 | 0 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 16 | 0 |
0 | 0 | 0 | 16 |
12 | 5 | 0 | 0 |
12 | 12 | 0 | 0 |
0 | 0 | 12 | 5 |
0 | 0 | 12 | 12 |
12 | 12 | 0 | 0 |
12 | 5 | 0 | 0 |
0 | 0 | 5 | 12 |
0 | 0 | 12 | 12 |
13 | 0 | 0 | 0 |
0 | 13 | 0 | 0 |
0 | 0 | 13 | 0 |
0 | 0 | 0 | 13 |
G:=sub<GL(4,GF(17))| [0,0,5,12,0,0,12,12,12,12,0,0,12,5,0,0],[1,0,0,0,0,1,0,0,0,0,16,0,0,0,0,16],[12,12,0,0,5,12,0,0,0,0,12,12,0,0,5,12],[12,12,0,0,12,5,0,0,0,0,5,12,0,0,12,12],[13,0,0,0,0,13,0,0,0,0,13,0,0,0,0,13] >;
M4(2).10C23 in GAP, Magma, Sage, TeX
M_4(2)._{10}C_2^3
% in TeX
G:=Group("M4(2).10C2^3");
// GroupNames label
G:=SmallGroup(128,1799);
// by ID
G=gap.SmallGroup(128,1799);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,-2,253,120,758,248,2804,172,4037,1027,124]);
// Polycyclic
G:=Group<a,b,c,d,e|a^8=b^2=1,c^2=a^6*b,d^2=e^2=a^4,b*a*b=a^5,c*a*c^-1=a^-1*b,d*a*d^-1=a^3,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,d*c*d^-1=a^6*b*c,c*e=e*c,d*e=e*d>;
// generators/relations